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Traditionally, trends of universal turbulence statistics are presented versus Rλ, which
is the Reynolds number based on Taylor’s scale λ and the root-mean-square (rms) of
a component of velocity urms. λ and urms, and hence Rλ, do not have the attribute of
universality. The ratio of rms fluid-particle acceleration to the rms of the acceleration
caused by the viscous force, Ra, is an alternative to Rλ. Ra is a Reynolds number. It
is composed of statistics of the small scales of turbulence. It can be evaluated with
single-wire hot-wire anemometry. Like Rλ, it can be partially evaluated by means
of flow similarity. Direct measurement of Ra is challenging; therefore, Ra is not a
replacement for Rλ. For isotropic turbulence the relationship between Ra and Rλ is
given. Anisotropic turbulence is discussed.

1. Introduction
Reynolds (1883) sought, from the Navier–Stokes equation, ‘. . . the dependence of

the character of motion on a relation between the dimensional properties and the
external circumstances of motion’. Assuming that the motion depends on a single
velocity scale U and length scale c, Reynolds found that the accelerations are of
two distinct types and thereby deduced that the relevant solution of the Navier–
Stokes equation ‘would show the birth of eddies to depend on some definite value of
cρU/µ,’ where ρ is the mass density of the fluid and µ is the coefficient of viscosity.
Reynolds directed exhaustive experiments that demonstrated his deduction, as well as
experiments on the stabilization of fluctuating flow. He discovered the sudden onset
of flow instability. The Navier–Stokes equation is a = ∂u/∂t+ u · ∇u = −∇p+ ν∇2u,
where p is pressure divided by ρ, ν = µ/ρ is kinematic viscosity, u is the velocity vector,
and a is the acceleration. Batchelor (1967) discussed (in his § 4.7) the interpretation
of the Reynolds number as a measure of a relative to the viscous term ν∇2u. He
noted that the balance of the Navier–Stokes equation can also be parameterized
in terms of the relative magnitudes of ∇p and ν∇2u. The latter parameterization
does not technically lead to a Reynolds number, but it will be shown that the two
parameterizations become equivalent at large Reynolds numbers. Consider the two
ratios:

Ra ≡ 〈a · a〉1/2/〈ν2(∇2u) · (∇2u)〉1/2 (1.1a)

R∇p ≡ 〈∇p · ∇p〉1/2/〈ν2(∇2u) · (∇2u)〉1/2, (1.1b)

where angle brackets denote an average. Ra is a Reynolds number in Batchelor’s
concept, and R∇p is a parameterization of the relative magnitudes of ∇p and ν∇2u.
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To paraphrase Nelkin’s (1994) description of Reynolds number scaling: if two
turbulent flows have the same geometry and the same Reynolds number, then their
statistics, when appropriately scaled, should be equal. A statistic of the small scales of
turbulence is an average of quantities that contain only products of differences, such as
two-point velocity difference or derivatives of velocity. Universality of the small scales
of turbulence is the hypothesis that every statistic of the small scales, when appro-
priately scaled, should become independent of the type of flow as Reynolds number
increases (Nelkin 1994; Sreenivasan & Antonia 1997); that is, the flow geometry
becomes negligible in the limit that the Reynolds number is infinite. Discovering
the appropriate scaling that results in universality is the topic of a vast amount of
research (Nelkin 1994; Sreenivasan & Antonia 1997) and will not be pursued here.
The relevance of universality to real turbulent flows is discussed by Nelkin (1994) and
Sreenivasan & Antonia (1997).

The Reynolds number based on the root-mean-square (rms) of the longitudinal-
velocity component urms ≡ 〈u2

1〉1/2 and Taylor’s length scale λ is Rλ ≡ urmsλ/ν, where ν is
kinematic viscosity, and λ ≡ urms/〈(∂u1/∂x1)

2〉1/2. Here, u1 and x1 are the components
of velocity and spatial coordinate in the direction of the 1-axis. For decades, Rλ has
been used as the abscissa for presenting statistics that are believed to be universal
aspects of small-scale turbulence (such as velocity-derivative statistics normalized by
powers of 〈(∂u1/∂x1)

2〉). The observed trends as Rλ increases are an often-sought
quantification of scaling universality. Rλ has the advantage of being easily measured
because it requires only measurement of u1 (which yields ∂u1/∂x1 by means of Taylor’s
hypothesis); that measurement can be obtained with a single hot-wire anemometer.
Alternatively, flow similarity can be used to estimate the energy dissipation rate ε,
and by substituting the local-isotropy relationship that ε = 15ν〈(∂u1/∂x1)

2〉, Rλ can
be obtained from Rλ = u2

rms/(εν/15)1/2. Because Rλ depends on urms, it depends on
large-scale geometry of the flow. Nelkin (1994) discussed the non-universal attributes
of Rλ. As a result of the non-universality of Rλ, statistics of the small scales, e.g.
normalized derivative moments, when graphed with Rλ on the abscissa, can have
different curves corresponding to dissimilar flows.

2. Alternative
In addition to graphing such statistics with Rλ on the abscissa, it would seem

advantageous to use a quantity on the abscissa that is solely a property of the
small scales of turbulence. That advantage has long been recognized (Wyngaard
& Tennekes 1970; Van Atta & Antonia 1980; Antonia Chambers & Satyaprakash
1981). Here, we consider the alternative Ra defined in (1.1a), and determine how it
can be measured with an instrument no more complex than a single-wire hot-wire
anemometer. Because the intended application is to statistical characteristics of the
small scales it is appropriate to simplify Ra and R∇p on the basis of local isotropy.
Indeed, local isotropy is a precondition for universality (Nelkin 1994; Sreenivasan
& Antonia 1997). On this basis, 〈a · a〉 = 〈∇p · ∇p〉 + 〈ν2(∇2u) · (∇2u)〉 (Obukhov &
Yaglom 1951; Hill & Thoroddsen 1997); in which case

Ra =
√

1 + R2∇p. (2.1)

For high Reynolds numbers 〈∇p · ∇p〉 � 〈ν2(∇2u) · (∇2u)〉 (Hill & Thoroddsen 1997),
such that (2.1) becomes Ra ' R∇p.
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3. Choices for evaluating the variance of ν∇2
xu

The spatial correlation of ν∇2
xu is (Obukhov & Yaglom 1951)

Vij(r) ≡ 〈ν2∇2
xui∇2

x′u
′
i〉 = −ν

2

2
∇2
r∇2

rDij(r), (3.1)

where a prime denotes evaluation at a point x′; x and x′ are independent variables;
r ≡ x− x′; ∇2

r is the Laplacian operator in r-space; the right-most expression in (3.1)
is obtained on the basis of local homogeneity. Let ε denote the energy dissipation rate,
and Dij(r) and Dijk(r) denote the second- and third-order velocity structure functions.
The Navier–Stokes equation and local isotropy give (Hill 1997) ∂tDij(r) + ∂rkDijk(r) +
(4/3)ε = 2ν∇2

rDij(r); applying the operator −(ν/4)∇2
r to that equation and comparison

with (3.1) gives

Vij(r) = −(ν/4)∇2
r [∂tDij(r) + ∂rkDijk(r)]. (3.2)

Derivative operators are abbreviated; e.g., ∂t = ∂/∂t, ∂2
r = ∂2/∂r2, etc. Summation is

implied by repeated indexes. Performing the contraction of (3.1) and (3.2) such that
the terms become functions of r and ∇2

r → ∂2
r + (2/r)∂r , we have, on the basis of local

isotropy,

Vii(r) = −ν2

(
∂4
r +

5

r
∂3
r

)
Dββ(r) = −ν

2

2

(
r∂5

r + 11∂4
r +

24

r
∂3
r

)
D11(r)

= −∂t ν
4

[∂2
r +

2

r
∂r]Dii(r)

+
ν

2

[
− 1

r3
D111(r) +

(
−∂3

r − 7

r
∂2
r − 3

r2
∂r +

6

r3

)
D1ββ(r)

]
,

where the 1-axis is parallel to r and subscript β denotes either of the two Cartesian
axes perpendicular to the 1-axis. Power-series expansion of the structure functions,
followed by differentiation and taking the limit r → 0, gives various formulas for the
variance of ν∇2

xu:

Vii(0) = 〈ν2(∇2u) · (∇2u)〉 = 12ν2〈(∂2
x1
uβ)2〉 = 35ν2〈(∂2

x1
u1)

2〉
= − 1

2
∂tε− 105

4
ν〈(∂x1

uβ)2∂x1
u1〉 = − 1

2
∂tε− 35

2
ν〈(∂x1

u1)
3〉, (3.3)

where ∂2
x1
≡ ∂2/∂x2

1. The term −(1/2)∂tε, which vanishes for local stationarity, is
included above, but was neglected by Hill & Thoroddsen (1997); −(1/2)∂tε is hence-
forth neglected. The enstrophy generation rate can be written as (Tsinober, Kit &
Dracos 1992): (−35/2)〈(∂x1

u1)
3〉 = 〈ωiωjsij〉 = (−4/3)〈sijsjkski〉; comparing this with

the right-most expression in (3.3) gives expressions that can be evaluated by DNS or
multi-wire anemometers (Tsinober et al. 1992):

〈ν2(∇2u) · (∇2u)〉 = ν〈ωiωjsij〉 = − 4
3
ν〈sijsjkski〉, (3.4)

where ωi is vorticity vector and sij is rate-of-strain tensor.

3.1. Empirical estimates of 〈ν2(∇2u) · (∇2u)〉
Figure 5 of Sreenivasan & Antonia (1997) shows much of the existing data for the
velocity-derivative skewness:

S ≡ 〈(∂x1
u1)

3〉/〈(∂x1
u1)

2〉3/2.
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In terms of the skewness, (3.3) gives

〈ν2(∇2u) · (∇2u)〉 = 0.30ε3/2ν−1/2|S |. (3.5)

For Rλ > 400 Antonia et al. (1981) show |S | increasing from 0.5 as |S | ' 0.5(Rλ/400)0.11;
(3.5) then gives

〈ν2(∇2u) · (∇2u)〉 ' 0.078ε3/2ν−1/2R0.11
λ for Rλ > 400. (3.6)

Herring & Kerr (1982) and Kerr (1985) show |S | increasing from 0.074 at Rλ = 0.46
to become constant at 0.5 for Rλ > 20. Thus, in the range 20 < Rλ < 400, (3.5) gives

〈ν2(∇2u) · (∇2u)〉 ' 0.15ε3/2ν−1/2 for 20 < Rλ < 400. (3.7)

The DNS data of Herring & Kerr (1982) suggest that |S | ' Rλ/5 for Rλ < 1, then
〈ν2(∇2u) · (∇2u)〉 ' 0.06ε3/2ν−1/2Rλ. If ε and urms are known from measurements or
from flow similarity, then Rλ = u2

rms/(εν/15)1/2, which can be used to determine which
of the above formulas should be used.

4. Choices for evaluating the variance of ∇p
Poisson’s equation, local homogeneity and local isotropy, but no other approxi-

mations, result in (Hill & Wilczak 1995)

〈∇p · ∇p〉 = 4

∫ ∞
0

r−3[D1111(r) + Dαααα(r)− 6D11ββ(r)] dr, (4.1)

where D1111(r), Dαααα(r) and D11ββ(r) are components of the fourth-order velocity
structure-function tensor, defined by Dijkl(r) ≡ 〈(ui − u′i)(uj − u′j)(uk − u′k)(ul − u′l)〉;
the 1-axis is parallel to the separation vector r; α and β denote the Cartesian axes
perpendicular to the 1-axis. Thus, α and β are 2 or 3; equally valid options under
local isotropy are α = β or α 6= β.

As noted by Hill & Wilczak (1995), Hill & Boratav (1997), and Nelkin & Chen
(1998), there is enough cancellation between the positive and negative parts of the
integrand, i.e. between r−3[D1111(r)+Dαααα(r)] and −r−36D11ββ(r), to make evaluation of
the integral

∫ ∞
0
r−3[D1111(r)+Dαααα(r)−6D11ββ(r)] dr difficult by means of experimental

or DNS data. Hill & Wilczak (1995) argued that the ratio

Hχ ≡

∫ ∞
0

r−3[D1111(r) + Dαααα(r)− 6D11ββ(r)] dr∫ ∞
0

r−3D1111(r) dr

=
〈∇p · ∇p〉

4

∫ ∞
0

r−3D1111(r) dr

,

is a universal constant at high Reynolds numbers. Universality of Hχ is equivalent to
the assertion that 〈∇p·∇p〉 scales with

∫ ∞
0
r−3D1111(r) dr at high Reynolds numbers. Hill

& Wilczak (1995) pointed out that the utility of determining Hχ is that the pressure-
gradient variance can then be measured with a single-wire hot-wire anemometer by
means of

〈∇p · ∇p〉 = 4Hχ

∫ ∞
0

r−3D1111(r) dr. (4.2)

Thus, the choices for evaluating 〈∇p ·∇p〉 are (4.1), or (4.2) (for which the values of Hχ

are discussed below), or to use the values of 〈∇p · ∇p〉 obtained from the DNS data of
Vedula & Yeung (1999) and Gotoh & Fukayama (2001) in the range 20 . Rλ . 400,
or (4.3)–(4.4), also discussed below.
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4.1. Empirical estimates of 〈∇p · ∇p〉
Asymptotic expressions for 〈∇p · ∇p〉 derived from empirical data for the shape of
D1111(r) at high Reynolds numbers substituted into (4.2) are (Hill 2002)

〈∇p · ∇p〉 ' 3.1Hχε
3/2ν−1/2F0.79 ' 3.9Hχε

3/2ν−1/2R0.25
λ for Rλ & 400, (4.3)

where

F ≡ 〈(∂x1
u1)

4〉/〈(∂x1
u1)

2〉2.
The empirical data for (4.3) are for Rλ & 400, but Hill (2002) shows that (4.3) is in
quantitative agreement with DNS for Rλ & 200. The right-most expression in (4.3) is
obtained from the data for F of Antonia et al. (1981), which are in agreement with data
at Rλ = 104 of Kolmyansky, Tsinober & Yorish (2001). The low-Reynolds-number
asymptote given by Hill (2002) is

〈∇p · ∇p〉 ' 0.11ε3/2ν−1/2Rλ for Rλ . 20. (4.4)

Using DNS data, it is preferable to evaluate Hχ from

Hχ = 〈∇p · ∇p〉/
[
4

∫ ∞
0

r−3D1111(r) dr

]
;

this avoids the statistical uncertainty caused by the cancellations within the integrand
of (4.1). Vedula & Yeung (1999) evaluated Hχ using DNS data with Rλ < 230; they
found that Hχ varied from 0.55 at Rλ = 20 to a constant value of about 0.65 in the
range 80 < Rλ < 230. For Hχ = 0.65, (4.3) agrees quantitatively with the DNS data in
table 1 of Gotoh & Fukayama (2001) for Rλ > 387, and (4.3) is a good approximation
for Rλ & 200 (Hill 2002). Since the asymptotic formula (4.3) is thereby verified with
Hχ = 0.65, the range of validity of Hχ = 0.65 seems to extend to the highest Rλ for
which Antonia et al. (1981) obtained F , namely Rλ ' 104, but it might extend to
Rλ = ∞. On that basis, Hχ increases from its the low-Reynolds-number asymptote
(Hill 1994) of 0.36 as Rλ −→ 0, to 0.55 at Rλ = 20, and to Hχ ' 0.65 in the range
Rλ > 80.

5. Isotropic turbulence
For isotropic turbulence there is a one-to-one relationship between Ra and Rλ; it

is shown in figure 1 with R∇p included. Figure 1 was obtained from (2.1) by use of
(3.6)–(3.7), (4.3)–(4.4) and (3.5) and the discussions following those equations. That is:
For Rλ . 1, 〈ν2(∇2u) · (∇2u)〉 ' 0.06ε3/2ν−1/2Rλ and (4.4) give R∇p ' (12Rλ/35|S |)1/2 '
(12/7)1/2 ' 1.3. For 1 . Rλ . 20, (3.5) and (4.4) give R∇p ' (12Rλ/35|S |)1/2 such that
the data of Kerr (1985) for |S | gives the plus symbols in figure 1. For 20 . Rλ . 400,
(3.5) with |S | = 0.5 gives R∇p ' 2.6(〈∇p · ∇p〉/ε3/2ν−1/2)1/2 such that data for 〈∇p · ∇p〉
tabulated by Vedula & Yeung (1999) give the asterisks in figure 1 and data for 〈∇p·∇p〉
given by Gotoh & Fukayama (2001) give the triangles in figure 1. For Rλ & 400, (3.6)
and (4.3) give R∇p ' [(3.1Hχε

3/2ν−1/2F0.79)/(0.3ε3/2ν−1/2|S |)]1/2 ' 5.7R0.07
λ . Finally, Ra

is calculated from the above determinations of R∇p using (2.1), i.e. Ra = (1 + R2∇p)1/2.
In figure 1, the upper symbols are Ra and are not distinguishable from the symbols
for R∇p where Rλ > 20. The solid line depicting Ra ' R∇p ' 5.7R0.07

λ is extended to
Rλ = 100 to show, by comparison with the data of Vedula & Yeung and Gotoh &
Fukayama, that it is a good approximation for Rλ & 200.

From Rλ = 1 to 104 in figure 1, R∇p changes by one decade and Ra by less. The
magnitude of Ra relative to Rλ or of Rλ to any other Reynolds number is not relevant
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Figure 1. Relationship between Ra and Rλ (upper curve) and between R∇p and Rλ (lower curve) for
isotropic turbulence. The straight lines are from the asymptotic formulas given in the text, and the
symbols are from DNS data as described in the text.

to scaling. Figure 1 is based on nearly isotropic data only for Rλ . 400; for Rλ & 400
the data used for F in (4.3) and S in (3.5) are those of Antonia et al. (1981) which
consist, in part, of atmospheric surface layer data at Rλ & 2000; those data are in
agreement with data at Rλ = 104 by Kolmyansky et al. (2001). The assumption is
that for Rλ & 400 the turbulence is sufficiently locally isotropic that the relationships
of F and S to Rλ measured by Antonia et al. (1981) do not differ significantly from
what they would be for isotropic turbulence. Some support for the assumption is that
the asymptote R∇p ' 5.7R0.07

λ in figure 1 agrees with the nearly isotropic data for Rλ
as small as 200. However, further confirmation must await DNS and experiments on
nearly isotropic turbulence at higher Reynolds numbers than have been attained to
date.

5.1. Relationship to recent data

The DNS data of Vedula & Yeung (1999), Gotoh & Rogallo (1999) and Gotoh &
Fukayama (2001) are in the range of Rλ where |S | ' 0.5 so (3.7) gives 〈ν2(∇2u)·(∇2u)〉 '
0.15ε3/2ν−1/2. In their figure 1, Vedula & Yeung (1999) show a ratio that they call
ζ, which equals R2∇p, as well as a quantity a(I)

0 ≡ 〈a · a〉/(3ε3/2ν−1/2) ' 0.05R2
a , where

〈ν2(∇2u) · (∇2u)〉 ' 0.15ε3/2ν−1/2 was used; they graphed both ζ and a
(I)
0 versus Rλ.

Similarly, Gotoh & Rogallo (1999) and Gotoh & Fukayama (2001) show F∇p =

3a(I)
0 = 〈a · a〉/(ε3/2ν−1/2) ' 0.15R2

a versus Rλ in their figures 1 and 2. Therefore, the
above-mentioned graphs show R2∇p and R2

a as Rλ varies. Reversing the role of ordinates
and abscissas in their graphs and in figure 1, the graphs show Rλ for nearly isotropic
turbulence as the universal Reynolds number Ra varies.

6. Anisotropic turbulence
By the definition of anisotropic turbulence, the value of 〈u2

1〉 depends on the
direction of r. Thus, Rλ does also. With Rλ on the abscissa, the appearance of
graphed statistics can change depending on which velocity component is used to
calculate Rλ. For anisotropic and/or inhomogeneous flows the Reynolds number is
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Figure 2. (a) Velocity derivative flatness data of Belin et al. (1997) graphed versus Rλ with different
symbols for different ranges of Rλ. (b) Same data and symbols as in (a), but graphed versus Ra.
Scatter of the data is increased relative to (a) because of scatter in the data for S used to evaluate
Ra (see text).

not the only parameter required to study the statistics of small scales. The most
useful dimensionless parameters should be identified for each flow. Consider F at the
highest Rλ in figure 6 of Sreenivasan & Antonia (1997). Most of those F values are
from the atmospheric surface layer data of Wyngaard & Tennekes (1970) for which
the definition of Rλ included the variance of horizontal velocity (denoted by 〈u2〉
in their equation (25)). Consider the portion of their data obtained during daytime
convective conditions. For data from the surface layer under convective conditions,
the variance of the streamwise component of velocity relative to the friction velocity
depends on the ratio of height above ground to both the Monin–Obukhov length and
the depth of the entire convective boundary layer. Without axes that represent the
dependence on such other relevant parameters, a projection of data onto the F versus
Rλ plane produces scatter in the data. A simpler case is uniform shear flow, for which
both Reynolds number and mean shear are relevant parameters (see Saddoughi &
Veeravalli 1994 and Schumacher, Sreenivasan & Yeung 2002; the former reference
discusses dimensionless shear parameters in detail).



410 R. J. Hill

Turbulent flow in a cylinder driven by counter-rotating blades has several modes
of large-scale structure (Zocchi et al. 1994; Voth et al. 2002) and is anisotropic
at large scales, but local isotropy is approached in the centre of the cylinder
(La Porta et al. 2001) at high Reynolds numbers. Belin et al. (1997) measured S ,
F , H∗5 ≡ 〈|∂x1

u1|5〉/〈(∂x1
u1)

2〉5/2 and H6 ≡ 〈(∂x1
u1)

6〉/〈(∂x1
u1)

2〉3 in the flow between
counter-rotating blades at positions displaced from the centre toward both the wall
and blades (as described in Zocchi et al. 1994); they graph F , H∗5 and H6 with Rλ on
the abscissa; each statistic has a maximum and a minimum. Figure 2(a) reproduces
their graph of F versus Rλ. Their values of F , H∗5 and H6 are related to each other
by power laws that Belin et al. (1997) describe as impressive despite the complexity
of the evolution of the same quantities with Rλ. From the choices for evaluation, we
select (3.5) and (4.3) and obtain R∇p = (2.0F0.79/0.3|S |)1/2 and thereby evaluate R∇p
and Ra using the data for S and F of Belin et al. The result gives F versus Ra in
figure 2(b). Unfortunately, their S values are too scattered for such a calculation (the
scatter is caused by noise; P. Tabeling, private communication 2001). The maximum
and minimum in figure 2(a) appear to be absent in figure 2(b), but the scatter might
obscure some other complicated behaviour. As an example, consider that the power
law |S | = 0.25F3/8 seems to be accurate for a variety of flows for Rλ & 400 (Cham-
pagne 1978; Antonia et al. 1981). If the noise-free S value in the flow of Belin et
al. (1997) were related to F by some power law, then Ra ' R∇p = (2.0F0.79/0.3|S |)1/2

would be related to F by a power law. From the results of Belin et al., S , F , H∗5
and H6 would then all be related to Ra by power laws, despite the complexity of the
evolution of those quantities with Rλ. Perhaps this possibility will motivate efforts to
achieve accurate measurement of S and of the more basic measures of 〈ν2(∇2u) ·(∇2u)〉
in (3.3)–(3.4).

7. Summary and comment
As defined in (1.1a), Ra is a Reynolds number; it is the ratio of rms fluid-particle

acceleration to the rms of acceleration caused by the viscous force; it is composed
of statistics of the small scales of turbulence; it can be used as a universal abscissa
for judging the universality of turbulence statistics. Although R∇p is not strictly a
Reynolds number, it also can be used as a universal abscissa. At high Reynolds
numbers, R∇p ' Ra. R∇p can be evaluated with single-wire hot-wire anemometry and
by flow similarity; use of (2.1) then determines Ra. For DNS studies, Ra can be
calculated from its definition (1.1a). Experimental determination of Ra is difficult;
thus Ra is an alternative to Rλ, not a replacement for it.

Improved data for 〈ν2(∇2u) · (∇2u)〉 and 〈∇p · ∇p〉, and their relationships to the
local-isotropy formulas (3.1)–(3.4) and (4.1)–(4.2), as well as improved data for Hχ

would be useful in the present context. For evaluation of the correlation of viscous
force, it is clear from figure 13 of Vedula & Yeung (1999) that DNS must have
especially fine spatial resolution. Use of the single-wire anemometer approximations
in (3.3) suggest that further studies of the accuracy of local isotropy are needed. To
calculate Ra by means of the local isotropy formulas, the flow should approximately
attain local isotropy.

Models of small-scale statistics of turbulence should be expressed in terms of
universal attributes instead of in terms of Rλ. For example, in table II of Belin et al.
(1997), the model by Pullin & Saffman (1993) is in good agreement with data when
it is judged in terms of power laws between derivative moments, but in relatively
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poor agreement when judged in terms of power laws between normalized derivative
moments and Rλ. Rλ can be specific to the flow geometry.

The author thanks P. Tabeling for sending the data of Belin et al., and thanks
the organizers of the Hydrodynamics Turbulence Program held at the Institute for
Theoretical Physics, UCSB, whereby this research was supported in part by the
National Science Foundation under grant number PHY94-07194.
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